Linieares GLs, noch den W. vorlesen

\[3 \cdot x = 0 \]

\[\begin{align*}
 \frac{\sigma_0 x}{\sigma_0} - b_1 \cdot \bar{x} - b_0 \cdot \bar{x} &= - \frac{\sigma_1 x}{\sigma_0} \\
 \frac{\sigma_0 x}{\sigma_0} - b_1 \cdot \bar{x} - b_0 \cdot \bar{x} &= - \frac{\sigma_1 x}{\sigma_0}
\end{align*} \]

Linienvektor Regression

\[\begin{align*}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 \end{bmatrix}
 &= \begin{bmatrix}
 \sigma_0 & b_1 \\
 \sigma_0 & b_0
 \end{bmatrix}
 \begin{bmatrix}
 \sigma_0 \\
 \sigma_0
 \end{bmatrix}
\end{align*} \]

1M 12.5 09
Lineare Regression zur Klassifikation

Regressionsgerade
Fehler der Regression, die keine echten Fehler sind

Paarweise Regression

Klassen A, B, C
4 Stimmten für eine Instanz

\[
\begin{align*}
A : B & : -0,8 \\
A : C & : +0,2 \\
B : C & : +0,7
\end{align*}
\]

\[
\begin{align*}
A & : -0,6 \\
B & : +1,5 \\
C & : -0,9
\end{align*}
\]

\(\rightarrow \) wähle Klasse B
Logistic Regression

$$p = \frac{1}{1 + e^{-w^T x}}$$
The distance between two points

\[\sqrt{(4x)^2 + (4y)^2} \]

is given by the Manhattan or L1 distance:

\[|18x| + |18y| \]
Play

Play