Exercise 19: Instance based learning: k-nearest-neighbour

(a) Briefly sketch how a classification with \(k \)-nearest-neighbour is done.

(b) \(k \)-NN belongs to the so called lazy learning methods. What does this mean.

(c) When using \(k \)-NN a distance value is needed, which calculates the distance between. Often the so called cosine similarity is used. The cosine similarity is defined as:

\[
\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|},
\]

where \(\vec{a} \) and \(\vec{b} \) are the two instances in vector space.

Given are the following four training instances:

\[
\vec{a} = \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}, \quad \vec{d} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}
\]

To which class would the instance \(\vec{x} = (5, 8, 0)^T \) be assigned, if \(\vec{a} \) and \(\vec{b} \) belong to class X and \(\vec{c} \) and \(\vec{d} \) belong to class Y (2-NN-classification with cosine similarity as distance calculation)?

Exercise 20: Multiway splits

(a) Split the example data \(^1\) by the attribute temperature. Use the information gain criteria to determine the best splitting points.

Hint: One possibility to speed up the process to determine the best split point can be to define functions in \(R \). Perhaps not all calculations are necessary. If you skip some calculations reason why.

(b) Do a supervised discretization in \textit{Rapidminer} and compare the results with your calculated splits. What is the difference? If the results are different try to explain how \textit{Rapidminer} gets these results.

\(^1\)http://www.is.inf.uni-due.de/courses/im_ws15/uebung/data_a20.csv