Information Retrieval
Formalia
- Zielgruppe
- Angewandte Informatik Master mit 3+1 Wochenstunden und 6 Kreditpunkten
- Komedia Master mit 3+1 Wochenstunden und 6 Kreditpunkten
- ISE Master mit 3+1 Wochenstunden und 6 Kreditpunkten
Termine
Vorlesung
Tag | Zeit | Beginn | Ort |
Donnerstag | 13:30 - 15:55 | LC/137 |
Übungen
Tag | Zeit | Ort | Betreuer |
Donnerstag | 12:30 - 13:30 | LC/137 | Firas Sabbah, M.Sc. |
Beschreibung
Course Topics
- Extended Models: Predicate logic, ontologies
- Search User Interfaces: Query Specification, Presentation of Search Results, Query Reformulation, Supporting the Search Process, Designing the Search Process
- IR tasks:Learning to Rank, Classification, Clustering
- Implementation of IR Systems: Data structures, algorithms
- Deep Learning in IR
While this Web page is static, all further (and more current) information can be found in the Moodle course (no signin key required).
Vorlesungsmaterial
Books
- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval. Cambridge University Press, 2008.
- Bruce Croft, Donald Metzler, Trevor Strohman: Search Engines: Information Retrieval in Practice. Addison-Wesley, 2009.
- R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval. Addison Wesley.
- Marti A. Hearst: Search User Interfaces. Cambridge University Press. (2009)
- Some further IR books and course notes are linked here.
Literature on specific topics
- Models
- N. Fuhr (2014): Bridging Information Retrieval and Database
- IR Measures
- Marco Ferrante; Nicola Ferro; Norbert Fuhr (2021): Towards Meaningful Statements in IR Evaluation. Mapping Evaluation Measures to Interval Scales.IEEE Access abs/2101.026689
- Clustering
- N. Fuhr; M. Lechtenfeld; B. Stein; T. Gollub (2011): The Optimum Clustering Framework: Implementing the Cluster Hypothesis
Example exam questions
Slides
For copyright reasons, the slides are accessible from within the universitry network only!
- Lehrangebot des Fachgebiets
- Introduction
- Models
- Learning and classification
- Clustering
- User Interfaces
- IR Measures