Task 23: S/T-System

Given the S/T-System $Y = (S, T, F, K, W, M_0)$ with

- $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$
- $T = \{t_1, t_2, t_3, t_4, t_5, t_6\}$
- $F = \{(t_1, s_1), (s_1, t_2), (t_2, s_2), (s_2, t_1), (t_2, s_3), (t_2, s_4), (s_3, t_3), (s_4, t_4), (t_3, s_5), (t_4, s_5), (s_5, t_5), (s_5, t_6), (t_5, s_6), (t_6, s_6), (s_6, t_1)\}$
- $K = \{\infty, \infty, \infty, \infty, \infty, \infty\}$
- $W = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1\}$
- $M_0 = \{1, 0, 0, 0, 0\}$

(a) Draw the netgraph for the above example.

(b) Create the reachability table.

(c) Give the reachability graph.

(d) Consider the subnet $N' = (S', T', F')$ with

- $S' = \{s_3, s_4, s_5, s_6\}$
- $T' = \{t_3, t_4, t_5, t_6\}$
- $F' = \{(s_3, t_3), (s_3, t_4), (t_3, s_5), (t_4, s_5), (s_5, t_5), (s_5, t_6), (t_5, s_6), (t_6, s_6)\}$

(i) Is N' transition-bordered, place-bordered, or neither? Give reasons.

(ii) Draw the simplified netgraph for Y, in which N' is substituted with a single place or a single transition.

$4 + 5 + 5 + 6 = 20$ Points
Task 24: Traffic signal system as S/T-System

The following petri net models the behaviour of a traffic signal system, which consists of a traffic light for vehicles and one for pedestrians. The places green, yellow, red and red-yellow represent the states of the vehicle signal and red-F and green-F the states of the pedestrian signal.

(a) Is this a simple graph ("schlicht")? Give reasons.

(b) Are there nooses in this graph (i.e. loops between a single place and a single transition, without any intermediate nodes)? If yes, where? If no, why not?

(c) What can be the elements of the corresponding S/T-System $Y = (S, T, F, K, W, M_0)$?

(d) Create the reachability table for Y.

(e) Unfortunately, the above modelled traffic signal does not function properly. Which unwanted situations may occur?

(f) Change the netgraph so that it models the traffic signal system correctly (draw).

\[2 + 2 + 4 + 5 + 3 + 4 = 20 \] Points