MIND: An architecture for multimedia information retrieval in federated digital libraries

Henrik Nottelmann
University of Dortmund, Germany
Synopsis

1. Retrieval in Digital Libraries
2. Architecture
3. Terminology
4. Query process in detail
 • query transformation
 • resource selection
 • data fusion
5. Resource gathering in detail
6. Project organisation
MIND: An architecture for multimedia information retrieval in federated digital libraries

Retrieval in Digital Libraries

Henrik Nottelmann, University of Dortmund, Germany
Federated Digital Libraries

• Database-oriented approaches:
 – heterogeneity

• Information retrieval approaches:
 – vagueness and imprecision

• MIND bases on information retrieval approaches, extensions:
 – heterogeneity (e.g. query language, schema)
 – multimedia (text, facts, images, speech)
 – non-co-operative libraries (query interface only)
MIND Architecture

• Dispatcher:
 – library-independent work

• Co-operating proxies:
 – extend functionality of non-co-operating library
 – provide all information required by the dispatcher
 – standard implementation with textual resource descriptions (XML)
Terminology

- Schema
 - Attribute
 - Name
 - Media type
 - Data type
 - Domain
 - Predicate
 - Predicate
Terminology
Terminology
Query Transformation

- Heterogenous schemas
- Required: uncertain mapping between schemas, used to transform user query to proprietary query

Diagram:

- Dublin Core
 - title
 - creator
- RFC 1807
 - title
 - author
Query Transformation

- Heterogenous schemas
- Required: uncertain mapping between schemas, used to transform user query to proprietary query

Diagram:
- Dublin Core:
 - title
 - creator
- MARC 21:
 - 245
 - 100
 - 700
 - 710
Query Transformation

• Task:
 – transform user query to proprietary query

• Proxy:
 – transforms query condition by condition
Query Transformation

• Attribute/Predicate:
 – mapping modeled in probabilistic Datalog
 • probabilistic extension to Horn predicate logic
 • weights for facts and rules
 – certain mapping rules
 \[
 \text{dc_creator_equals}(D, V) \leftarrow \text{marc} _ 100 _ equals (D, V)
 \]
 \[
 \text{dc_creator_equals}(D, V) \leftarrow \text{marc} _ 700 _ equals (D, V)
 \]
 \[
 \text{dc_creator_equals}(D, V) \leftarrow \text{marc} _ 710 _ equals (D, V)
 \]
 – uncertain mapping rules
 \[
 0.4 \text{marc} _ 100 _ equals (D, V) \leftarrow \text{dc_creator_equals}(D, V)
 \]
 – rules and probabilities will be learned
Query Transformation

• Comparison value:
 – necessary, when domains do not match
 • dates: “2001-09-09” versus “September 9, 2001”
 • authors: “Fuhr, N.” versus “Norbert Fuhr”
 • classification schemas: DDC versus ACM
 • languages: German versus English
 • image colour histogram: different dimensions
 – transformation:
 • goal: automatic transformation
 • several methods possible, unclear which will be used
 • possibly: simple hardcoding in proxy
Resource Selection

• Task:
 – find relevant libraries w.r.t. the query

• Method:
 – decision-theoretic model
 – cost factors
 • computation and communication time
 • charges for delivery
 • retrieval quality
 – goal: retrieve many relevant documents at low expected costs
Resource Selection

• Task:
 – calculate optimum selection
 • vector $s = (s_1, ..., s_l)^T$
 • expected retrieval costs $EC_i(s_j)$
 • minimal overall (summed up) expected costs

• Proxies:
 – calculate $EC_i(j), 1 \leq j \leq n$

• Dispatcher:
 – calculates optimum selection $s = (s_1, ..., s_l)^T$

$s = (3, 0, 1, 2)^T$

DL_1 $s_1 = 3$

DL_2 $s_2 = 0$

DL_3 $s_3 = 1$

DL_4 $s_4 = 2$
Resource Selection
Resource Selection

• expected number of relevant documents in library

\[E(\text{rel} \mid q, DL) = \sum_{d \in DL} P(\text{rel} \mid q, d) \]

\[P(\text{rel} \mid q, d) = P(d \rightarrow q) \cdot P(\text{rel} \mid d \rightarrow q), P(\text{rel} \mid \neg d \rightarrow q) \approx 0 \]

\[P(d \rightarrow q) = \sum_{c_i \in q} P(d \rightarrow c_i) \cdot P(c_i \rightarrow q) \]

\[E(\text{rel} \mid q, DL) = P(\text{rel} \mid d \rightarrow q) \sum_{c_i \in q} P(c_i \rightarrow q) \sum_{d \in DL} P(d \rightarrow c_i) \]

– required: last sum of indexing weights
Resource Selection

- sum of indexing weights:
 - text, speech:
 - e.g. normalised tf idf values as indexing weight
 - facts, images:
 - feature vectors over continuous domain V
 - clusters $V_j \subseteq V$, centroid v_i
 - $f: V \times V \rightarrow [0,1]$ retrieval metric
 - approximation for indexing weight sum:
 $$\sum_{j} |V_j| \cdot f(v_j, value(c_i))$$
Data Fusion

• Task:
 – optimise overall retrieval quality

• Proxies:
 – modify weights of their documents (normalisation) based on global idf values
 – provide local df values
 – create summaries

• Dispatcher:
 – merges results w.r.t. normalised document weights
 – computes global idf values
Resource Description

• Schema
• Uncertain schema mapping
• Statistical description of collection:
 – text, speech: terms
 • document frequencies (df)
 • sum of indexing weights
 – facts, images: clusters of feature vectors
 • centroid vector, cluster radius (number of clusters determines granularity of metadata)
 • number of vectors in cluster
Resource Gathering

• Task:
 – create and update resource description

• Proxy:
 – uses query-based sampling for statistical descriptions
 • iterative retrieval of documents
 • assumption: union of results is representative for whole collection
 • extract resource description w.r.t. document sample
 – learns uncertain schema mapping rules
 – goal: learns library schema
Project Organisation

• Funded by the EU commission (FP 5)
• Duration:
 – January 2001 - June 2003
• Project participants:
 – University of Strathclyde (UK) (Coordinator)
 – University of Dortmund (Germany)
 – University of Florence (Italy)
 – University of Sheffield (UK)
 – Carnegie Mellon University (USA)
Conclusion

MIND deals with

• vagueness and imprecision
• heterogeneity
• multimedia
• resource selection
• data fusion
• non-co-operation (resource descriptions)
in federated digital libraries